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a b s t r a c t

I-type, J-type and non-synchronous centrifuges are all coil planet centrifuges. Analysing the motion of
I-type and J-type centrifuges has advanced the understanding of how to manufacture and use these cen-
trifuges. This paper analyses the motion of non-synchronous centrifuges producing equations of motion
that can be applied to all coil planet centrifuges. This has also produced simple equations to determine
the critical ˇ-values for any coil planet centrifuge. This paper also demonstrates that I-type centrifuges
also have 2 critical ˇ-values when it was thought that ˇ-value did not influence the understanding of the
processes within I-type centrifuges. For the I-type instrument both of these critical values are at bobbin
eywords:
oil planet centrifuge
ounter-current chromatography
on-synchronous
rchimedean screw effect
ave mixing

radii approaching infinity. In practice this means all I-types function within one ˇ-value range hence
the unilateral distribution and type/effectiveness of the mixing is consistent. Finally the paper shows
the influence that the tangential velocity has on the Archimedean screw effect and thus the unilateral
distribution of the upper and lower phases in the columns of coil planet centrifuges. This explains why
the maximum stationary phase retention in an I-type centrifuge is limited to 50%.
ascade mixing
-Value

. Introduction

I-type, J-type and non-synchronous centrifuges are all coil
lanet centrifuges. The I-type and J-type centrifuges are classified
s synchronous centrifuges because the bobbins/columns and rotor
ave the same rotational speed. The bobbin and rotor of an I-type

nstrument rotate in opposing directions, when viewed relative to
he rotor, and thus have different rotational velocities. Where as
he rotor and bobbins of a J-type rotate in the same direction and
hus have the same rotational velocity.

Non-synchronous centrifuges are much more complex. The
obbin/column and rotor will rotate at different speeds and the
irections of rotation may be the same or opposing one another.
hus it is important to derive general equations of motion and
ritical ˇ-values for all non-synchronous centrifuges.

.1. Synchronous planetary centrifuges

.1.1. J-type and I-type centrifuges
For J-type centrifuges it is known that the unilateral (hydro-
ynamic) distribution [1,2] of the upper and lower phases within
-type centrifuges is greatly influenced by critical ˇ-values. The
ritical ˇ-values for a J-type instrument are 0.25 and 0.5 [2,3].
hese critical values divide the column into three distinct ranges:

∗ Tel.: +44 01753 696979; fax: +44 01753 696976.
E-mail address: philip.wood@dynamicextractions.com.

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.12.038
© 2009 Elsevier B.V. All rights reserved.

0–0.25, 0.25–0.5 and above 0.5. Within any of these ranges, both the
unilateral distribution of a phase system and the type and effec-
tiveness of the mixing and settling are consistent. However the
unilateral distribution of the phase system and the effectiveness
of mass transfer (mixing and settling) may be different in each
range. Thus to understand the hydrodynamic processes inside a
coil planet centrifuge the critical ˇ-values must be known for that
centrifuge.

The J-type centrifuge, with a column wound above a ˇ-value
of 0.5, is characterised by high stationary phase retention which
can be greater than 95% and for this reason has become the most
popular form of counter-current chromatography (CCC) device for
separating and purifying small molecules. However, the wave mix-
ing in such a J-type centrifuge [4] is not vigorous enough to separate
biological samples using aqueous-polymer phase systems [5].

The I-type centrifuge is good at separating all types of molecules.
Sutherland et al. showed that I-type centrifuges produce cascade
mixing [4]. Cascade mixing is more vigorous than wave mixing
creating a larger total surface area thus increasing mass transfer
and chromatographic efficiency. Hence cascade mixing is particu-
larly suitable for separating biological samples in aqueous-polymer
phase systems [5]. However cascade mixing is compromised by the
maximum stationary phase retention of 50% [6,7].
Both the I-type and J-type centrifuges allow simple paths for
non-twisting flying leads due to the synchronous nature of the
rotation described above. Thus the planetary drive ratio of a J-
type centrifuge is 1, and is −1 for an I-type, planetary drive ratio is
defined in Section 2.

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:philip.wood@dynamicextractions.com
dx.doi.org/10.1016/j.chroma.2009.12.038
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Fig. 1. Cascade mixing in an I-type centrifuge [4].

.1.2. Cascade mixing and the I-type centrifuge
As Sutherland et al. [4] reported, cascade mixing occurs in an

-type centrifuge as shown in Fig. 1 regardless of ˇ-value. For I-
ype motion the resultant acceleration vectors all have the same

agnitude and direction as shown by the arrows in Fig. 1. How-
ver, these acceleration vectors do continuously change direction
elative to the axis of the column every 180◦. It is these continu-
us changes of the direction of the acceleration that cause cascade
ixing.

.1.3. Hydrodynamic processes in the J-type centrifuge
For a J-type centrifuge, it has been shown that hydrodynamic

ehaviour of the immiscible solvents is divided into three distinct
egions by two critical ˇ-values. These values are related to the
otion of the bobbin relative to the rotor, i.e. the planetary drive

atio. For a J-type centrifuge these critical values are 0.25 and 0.5
2,3]. These values divide the hydrodynamics of the J-type cen-
rifuge into three regions with ˇ-value ranges of 0–0.25, 0.25–0.5
nd above 0.5 [2].

Between 0 and 0.25 the resultant acceleration vectors contin-
ously change direction relative to the axis of the column for
ach 180◦ of rotation [3]. This is similar to the situation that
reates cascade mixing in an I-type centrifuge. Thus in the J-
ype centrifuge, a form of cascade mixing occurs in this ˇ-value
ange.

For a ˇ-value of 0.25 the radial acceleration at the proximal
ey node is zero. For ˇ-values above 0.25, the radial acceleration
ncreases proportionally but always points in the same direction
elative to the tubing. This allows the upper and lower phases
f the solvent system to form distinct layers within the column
3]. Thus in a J-type centrifuge, cascade mixing does not occur
bove a ˇ-value of 0.25. In fact wave mixing occurs as shown
n Fig. 2 and described by both Sutherland et al. [4] and Con-
ay [3]. Zones of mixing and settling travel along the column
oincident with the low (proximal key node) and high (distal
ey node) accelerations caused by the column’s epi-cyclic motion
4]. The mixing zones are coincident with the lower accelerations

Fig. 2. Wave mixing in a J-type centrifuge [4].
217 (2010) 1283–1292

at the proximal key node and take the form of waves [4]. The
settling zones are coincident with the high accelerations at the
distal key node and take the form of a smooth interfacial area
[3].

For ˇ-values between 0.25 and 0.5 the hydrodynamic (unilat-
eral) distribution of solvent systems is not consistent. Polar phase
systems distribute in the opposite manner to that of intermediate
and non-polar phase systems [1,2]. The Archimedean screw effect
states that the rotation of the coiled column transports (screws)
the contents of the column towards the head end of a column [8].
This assumes that the transportation process is consistent through-
out the column, i.e. the screwing effect always causes migration of
the column contents towards one end of the column. It has been
shown that below a ˇ-value of 0.5, the direction of the tangential
velocity changes and this is denoted in Fig. 3 by becoming neg-
ative each side of the proximal key node (angular position 180◦)
as shown in Eq. (10) from [2]. This change in direction of the tan-
gential velocity causes the Archimedean screw effect to reverse its
direction as and when the tangential velocity does. This also means
that the head and tail ends of the column switch ends whenever
the tangential velocity changes its direction. Hence for ˇ-values
below 0.5 the Archimedean screw effect does not consistently push
the contents of the column towards one end of the column. In fact
the Archimedean screw effect alternates the end of the column to
which it pushes the contents of the column. This partially explains
why hydrophilic (polar) phase systems exhibit the opposite uni-
lateral distribution (hydrodynamic behaviour) between ˇ-values
of 0.25 and 0.5 compared to intermediate and hydrophobic (non-
polar) solvent systems [1,2].

At a ˇ-value of 0.5 the radial and tangential velocities at the
proximal key node are zero [2]. Thus this part of the bobbin/column
is momentarily stationary (i.e. not moving) while the rest of the
bobbin/column is still moving.

For ˇ-values above 0.5 all solvent phase systems have the
same hydrodynamic distribution with the lower (denser) phase
migrating to the tail end of a column while the upper (less dense)
phase moves to the head [1,2]. Above a ˇ-value of 0.5 the tangen-
tial velocity does not switch direction, see Fig. 3, and hence the
Archimedean screw effect is consistent and upper phase always
migrates towards the head end of a column and vice versa. This
explains the consistent hydrodynamic behaviour (unilateral dis-
tribution) of all phase systems when ˇ-value is greater than
0.5.

1.2. Photographic evidence of wave mixing

At the 1984 Pittsburgh Conference Conway and Ito presented
photographic studies, of the mixing that occurs in J-type centrifuges
for ˇ-values between 0.5 and 0.9 [1,9]. At the 1985 Pittsburgh Con-
ference, Sutherland et al. extended the range of these photographic
studies for ˇ-values between 0.35 and 0.82 [7,10]. Unfortunately,
neither of the Pittsburgh Conference presentations was published
and the only images available in the public domain are those
shown in page 191 of Ref. [3] which were for ˇ-values greater than
0.5. Conway states, “macro-photographs show a wave motion at
the interface of the mixing zone with little, if any, generation of
droplets”. It would have been interesting to see if droplets could
be seen in the photographs presented by Sutherland for ˇ-values
between 0.35 and 0.5. However, evidence that there are differ-
ences in the effectiveness of the wave mixing above and below a
ˇ-value of 0.5 is presented below and shows that the wave mix-

ing in the ˇ-value range 0.25–0.5 is more effective than that above
0.5.

Now that scientific journals can print colour images it may be
time to publish all the stroboscopic images presented by Sutherland
and Conway. It may also be interesting to repeat these studies on a
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Fig. 3. Variation of the tangential velocity with ˇ-value for a J-type

uitable non-synchronous centrifuge knowing the critical ˇ-values
nd observe the different types of mixing, wave and cascade, and to
ee if there is an observable difference in the mixing waves above
nd below the critical ˇ-value ˇ1, see Section 2.

.2.1. Chromatographic efficiency in a J-type centrifuge
Table 1 from Sandlin and Ito [11] compares results for both

short” and “long” columns at ˇ-values of 0.25 and 0.50. A “short”
olumn was wound with a ˇ-value of 0.25 and a “long” column
as wound with a ˇ-value range of 0.25–0.30. Also a “short” col-
mn was wound with a ˇ-value of 0.50 and a “long” column was
ound with a ˇ-value range of 0.50–0.55.

Comparing the results for the “short” columns wound at 0.25
nd 0.5 showed that the chromatographic efficiency of the 0.25 ˇ-
alue columns was the greater. These chromatographic efficiencies
ere measured in terms of both the number of theoretical plates

nd resolution.
In Table 1 of Ref. [11] the higher resolution of the 0.25 ˇ-

alue short column cannot be attributed to stationary phase
etention. For reverse phase Sf = 84.1% (RS = 2.1) for the 0.25 ˇ-
alue column and for the 0.5 ˇ-value column the Sf = 84.6%
RS = 0.98).

In normal phase, even correcting1 for the reduced stationary
hase retention in the 0.5 ˇ-value column (Sf = 51.3%, RS = 0.97) does
ot account for the higher resolution of the 0.25 ˇ-value column
Sf = 77.5%, RS = 2.1).

Comparison of the chromatographic efficiencies of both the
long” columns shows that the 0.25 ˇ-value column also has the
reater efficiency in terms of resolution and the number of theoreti-
al plates, despite the 0.5 ˇ-value column having a higher stationary
hase retention for each separation in both normal and reverse
hase.
These higher chromatographic efficiencies must have been due
o more effective mixing and hence higher mass transfer rates in
he 0.25 ˇ-value columns. The mixing in the ˇ-value range 0.25–0.5

ust be more effective than above 0.5 and may be partially due to

1 The correction assumes that the peak widths remain constant for both the short
olumns but the difference between peak retention times is proportional to the
tationary phase retention (Sf).
fuge for a 110 mm rotor radius and a rotational velocity of 800 rpm.

the change in direction of the tangential velocity just either side of
the proximal key node as discussed earlier. Stroboscopic photog-
raphy could show evidence of such enhanced wave mixing within
the ˇ-value range 0.25–0.5.

1.3. Kinematic motion and critical ˇ-values

The kinematic analysis of the J-type centrifuge motion led to
the concept of critical ˇ-values. Originally it was assumed that
the I-type centrifuge had no critical ˇ-values. However, the kine-
matic analysis of non-synchronous centrifuges shows that the
I-type also has 2 critical ˇ-values. Both of these values tend
towards infinity (see Section 2). This explains why the I-type
centrifuges’ motion and mixing process are not influenced by ˇ-
value.

1.4. Non-synchronous centrifuges

Both I-type and J-type type centrifuges produce useful separa-
tions. However, the fixed planetary drive ratios of these centrifuges
may not be optimal for a particular class/family of molecules to
be separated or solvent system to be retained within the column.
Thus there is a need to adjust this drive ratio to suit particular
families of similar molecules and solvent systems normally used
to separate them. However, as explained above, ˇ-value plays
an important role in determining stationary phase retention and
chromatographic efficiency [1,2,11,12] in a J-type centrifuge. The
critical ˇ-values must also be taken into account when investigat-
ing the hydrodynamic behaviour of non-synchronous centrifuges.
The problem with critical ˇ-values is that they change depend-
ing upon the planetary drive ratio, i.e. the relative rotational
velocities of the rotor and bobbins. The following section pro-
vides two equations to calculate both critical ˇ-values based
upon the relative rotational velocities of the rotor and bob-
bins.
2. Theory

In this section, the kinematics of a point P on the inside wall
of a column that is undergoing non-synchronous motion are stud-
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ed. The column contains the mobile and stationary phases that as
uids are able to move relative to the point P. Thus the motion of
he point P although it greatly influences the motion of the mobile
nd stationary phases it is not the actual motion of these fluids.
owever the kinematics of the point P is a close approximation to

he motion of these fluids as demonstrated by previous kinematic
nalysis of the movement of I-type and J-type centrifuges [2–4,7]
nd can provide useful insights to the construction and use of coil
lanet centrifuges.

.1. Planetary drive ratio

The planetary drive ratio (PDr) is the rotational velocity of the
olumn/bobbin relative to the rotor (u) compared to the rotational
elocity of the rotor (ω).

Dr = u

ω

.2. Derivation of the kinematic equations of motion for
on-synchronous planetary centrifuges

From Fig. 4, resolve for the displacement of point P in the
-direction taking the centre of rotation as the origin. Then dif-
erentiate to obtained formulas for velocity and acceleration in the
-direction remembering that � = ωt and � = ut.

Displacement x-direction:

x = R cos(�) + r cos(� + �)

x = R cos(ωt) + r cos((u + ω)t)
(1)

Velocity x-direction:

dx

Vx =

dt
= −Rω sin(ωt) − r(u + ω) sin((u + ω)t) (2)

Acceleration x-direction:

Ax = d2x

dt2
= −Rω2 cos(ωt) − r(u + ω)2 cos((u + ω)t) (3)

Fig. 4. The free-body diagram for a non-
217 (2010) 1283–1292

From Fig. 4, resolve for the displacement of point P in the
y-direction taking the centre of rotation as the origin. Then dif-
ferentiate to obtain formulas for velocity and acceleration in the
y-direction.

Displacement y-direction:

y = R sin(�) + r sin(� + �)

y = R sin(ωt) + r sin((u + ω)t)
(4)

Velocity y-direction:

Vy = dy

dt
= Rω cos(ωt) + r(u + ω) cos((u + ω)t) (5)

Acceleration y-direction:

Ay = d2y

dt2
= −Rω2 sin(ωt) − r(u + ω)2 sin((u + ω)t) (6)

These equations represent the kinematic motion of point P in
space relative to the origin, which is the main rotary axis of a non-
synchronous planetary centrifuge. The negative signs in front of the
above equations mean that the directions of the vector quantities
are in the opposite direction to that shown in Fig. 4.

2.3. Radial and tangential velocities

From Fig. 5 resolving in the radial and tangential directions
gives:

Radial Velocity = Vx cos(� + �) + Vy sin(� + �)
(7)
Radial Velocity (VR) = Vx cos((u + ω)t) + Vy sin((u + ω)t)

Tangential Velocity = −Vx sin(� + �) + Vy cos(� + �)

Tangential Velocity (VT) = −Vx sin((u + ω)t) + Vy cos((u + ω)t)
(8)

synchronous planetary centrifuge.
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Fig. 5. The free-body diagram of a non-synchronous planetar

.3.1. Radial velocity
Substituting in Eq. (7) for Vx from Eq. (2) and for Vy from Eq. (5)

ives:

VR = −(Rω sin(ωt) + r(u + ω) sin((u + ω)t)) cos((u + ω)t) + (Rω cos

VR = −Rω sin(ωt) cos((u + ω)t) − r(u + ω) sin((u + ω)t) cos((u + ω)

hich reduces to:

R = Rω[cos(ωt) sin((u + ω)t) − sin(ωt) cos((u + ω)t)]

sing sin(A − B) = sin(A) cos(B) − cos(A)sin(B) where A = (u + ω)t and
= ωt

ives : VR = Rω sin(ut) (9)

Since there is a no negative sign at the front of Eq. (9) the direc-
ion of VR is the same as shown in Fig. 5. Eq. (9) also shows that
he radial velocity will be zero whenever sin (ut) = 0 which is when
t = 0◦ and 180◦, i.e. the proximal and distal key nodes. This equation
lso shows that the VR does not vary with ˇ-value.

For a J-type centrifuge where u = ω, Eq. (9) becomes:

-type VR = Rω sin(ωt)

hich agrees with the findings of Wood [2].
For an I-type centrifuge, the rotational velocity (u) of the bobbin

as the same magnitude as the rotational velocity (ω) of the rotor
ut is in the opposite direction, hence in Eq. (9) u is replaced by −ω
o Eq. (9) becomes:

VT = (Rω sin(ωt) + r(u + ω) sin((u + ω)t)) sin((u +
VT = Rω[sin(ωt) sin((u + ω)t) + cos(ωt) cos((u + ω
-type VR = Rω sin(−ωt)

ince −sin(�) = sin(−�)

-type VR = −Rω sin(ωt) (10)
trifuge with the radial and tangential velocity vectors added.

+ r(u + ω) cos((u + ω)t)) sin((u + ω)t)

ω cos(ωt) sin((u + ω)t) + r(u + ω) cos((u + ω)t) sin((u + ω)t)

2.3.2. Tangential velocity
Substituting in Eq. (8) for Vx from Eq. (2) and for Vy from Eq. (5)

gives:

+ (Rω cos(ωt) + r(u + ω) cos((u + ω)t)) cos((u + ω)t)

+ r(u + ω)[sin2((u + ω)t) + cos2((u + ω)t)]

But sin2((u + ω)t) + cos2((u + ω)t) = 1.
Therefore VT = Rω[sin(ωt) sin((u + ω)t) + cos(ωt) cos((u +

ω)t)] + r(u + ω).
Using cos(A − B) = sin(A) sin(B) + cos(A) cos(B) where

A = (u + ω)t and B = ωt gives:

VT = Rω cos(ut) + r(u + ω) (11)

But ˇ = r/R hence r = Rˇ.
Therefore VT = Rω cos(ut) + Rˇ(u + ω)

VT = R[ω cos(ut) + ˇ(u + ω)] (12)

For a J-type centrifuge where u = ω Eq. (12) becomes:

J-type VT = Rω[cos(ωt) + 2ˇ] (13)

Which agrees with the findings of Wood [2].
For an I-type centrifuge where u = −ω Eq. (12) becomes:

I-type VT = Rω cos(−ωt)

Since cos(�) = cos(−�):

I-type VT = Rω cos(ωt) (14)
2.3.3. First critical ˇ-value
Eq. (12) shows that the tangential velocity is sinusoidal but with

an offset that depends upon the variables ω, ˇ-value and u. A crit-
ical ˇ-value will occur when VT = 0, let this be known as the first
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ritical ˇ-value (ˇ1). This can only occur when cos(ut) = −1 can-
elling the offset created by the variables ω, ˇ-value and u. So Eq.
12) becomes:

= R[ˇ1(u + ω) − ω]

For the right hand side of the above equation to = 0, either R
r the contents of the brackets must = 0. However the rotor radius
/= 0:

herefore 0 = ˇ1(u + ω) − ω

= ˇ1(u + ω)

1 = ω

u + ω
(15)

Eq. (15) represents ˇ1 in terms of the angular velocities of the
otor and the bobbin. Eq. (15) can also be applied to a J-type cen-
rifuge where u = ω. Thus ˇ1 for a J-type centrifuge = 0.5, which
grees with the findings of Wood [2].

Also for an I-type centrifuge where the bobbin has the same
otational speed but in the opposite direction to the rotor, u = −ω.
ubstituting in Eq. (15) for u shows that the first critical ˇ-value for
n I-type centrifuge tends towards infinity.

Dividing the numerator and denominator of Eq. (15) by ω gives:

1 = 1
(u/ω) + 1

Since PDr = u/ω then:

1 = 1
PDr + 1

(16)

.4. Radial and tangential accelerations

From Fig. 6 resolving in the radial and tangential directions.

Radial Acceleration (AR) = AX cos(� + �) + AY sin(� + �)

AR = AX cos((u + ω)t) + AY sin((u + ω)t)
(17)

Tangential Acceleration (AT) = −AX sin(� + �) + AY cos(� + �)

AT = −AX sin((u + ω)t) + AY cos((u + ω)t)
(18)

.4.1. Radial acceleration
Substituting in Eq. (17) for AX from Eq. (3) and for AY from Eq.

6) gives:

AR = −(Rω2 cos(ωt) + r(u + ω)2 cos((u + ω)t)) cos((u + ω)t) + (−Rω

AR = −Rω2 cos(ωt) cos((u + ω)t) − r(u + ω)2 cos2((u + ω)t) − Rω2

But cos2((u + ω)t) + sin2((u + ω)t) = 1
Therefore AR = −Rω2 cos(ωt) cos((u + ω) t) −

ω2 sin(ωt) sin((u + ω) t) − r(u + ω)2

Using cos(A − B) = cos(A) cos(B) + sin(A) sin(B) where
= (u + ω)t and B = ωt.

Therefore cos(ut) = cos((u + ω) t) cos(ωt) +
in((u + ω) t) sin(ωt)

herfore AR = −(Rω2 cos(ut) + r(u + ω)2) (19)

Since there is a negative sign, the direction of the AR is inwards
ue to the vector being in the opposite direction of that in Fig. 6.
Since ˇ = r/R ⇒ r = Rˇ.

herefore AR = −(Rω2 cos(ut) + Rˇ(u + ω)2)

R = −R(ω2 cos(ut) + ˇ(u + ω)2) (20)
217 (2010) 1283–1292

n(ωt) − r(u + ω)2 sin((u + ω)t)) sin((u + ω)t)

t) sin((u + ω)t) − r(u + ω)2 sin2((u + ω)t)

For a J-type centrifuge where u = ω, Eq. (18) becomes:

J-type AR = −Rω2(cos(ωt) + 4ˇ) (21)

Which agrees with the findings of Wood [13].
For an I-type centrifuge the rotational velocity (u) of the bobbin

has the same magnitude as the rotational velocity (ω) of the rotor
but is in the opposite direction, hence in Eq. (20), u is replaced by
−ω and Eq. (19) becomes:

I-Type AR = −Rω2 cos(−ωt)

Since cos(�) = cos(−�):

I-Type AR = −Rω2 cos(ωt) (22)

Which agrees with the findings of Wood [13].

2.4.2. Second critical ˇ-value
Eq. (20) shows that the radial acceleration is sinusoidal but with

an offset that depends upon the variables ω, ˇ-value and u. A criti-
cal ˇ-value will occur when AR = 0, let this be known as the second
critical ˇ-value (ˇ2). This can only occur when cos(ut) = −1 can-
celling the offset created by the variables ω, ˇ-value and u. So Eq.
(20) becomes:

0 = −R(−ω2 + ˇ2(u + ω)2)

For the right hand side of the above equation to = 0 either R or
the contents within the brackets must = 0. However the rotor radius
R /= 0, therefore:

0 = −ω2 + ˇ2(u + ω)2

ˇ2 = ω2

(u + ω)2
(23)

Eq. (23) represents ˇ2 in terms of the angular velocities of the
rotor and bobbin. It can be applied to a J-type centrifuge where
u = ω. Thus ˇ2 = 0.25, which agrees with that given in Refs. [13–15].

Also for an I-type centrifuge where the bobbin has the same rota-
tional speed but in the opposite direction to the rotor, i.e. u = −ω.
Substituting in Eq. (23) for u shows that ˇ2 for an I-type centrifuge
also tends towards infinity.

Dividing the numerator and denominator of Eq. (23) by ω2 gives:

ˇ2 = 1

(u + ω)2/ω2

ˇ2 = 1
(u2 + 2uω + ω2)/ω2

ˇ2 = 1
(u2/ω2 + 2u/ω + 1)

Since PDr = u/ω then

1

ˇ2 =

(PDr + 2PDr + 1)2

ˇ2 = 1

(PDr + 1)2
(24)
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Fig. 6. The free-body diagram of a non-synchronous centr

.4.3. Tangential acceleration
Substituting in Eq. (18) for AX from Eq. (3) and for AY from Eq (6)

ives:

AT =
(

Rω2 cos(ωt) + r(u + ω)2 cos ((u + ω) t)
)

sin ((u + ω) t) −
(

Rω2

AT=Rω2 cos (ωt) sin ((u + ω) t) + r(u + ω)2 cos ((u + ω) t) sin ((u + ω

T = Rω2 [sin((u + ω) t) cos(ωt) − cos((u + ω) t) sin(ωt)]

Using sin(A − B) = sin(A) cos(B) − cos(A) sin(B) where
= (u + ω)t and B = ωt

Therefore sin(ut) = sin((u + ω)t) cos(ωt) − cos((u +
)t) sin(ωt)

herefore AT = Rω2 sin(ut) (25)

Since there is no negative sign in front of Eq. (25), the direction
f AT is in the same as shown in Fig. 6. Also as there is no bobbin
adius (r) term in Eq. (25), AT is not influenced by the bobbin radius
nd consequently ˇ-value.

For a J-type centrifuge, where u = ω, Eq. (25) becomes:

-type AT = Rω2 sin(ωt) (26)

hich agrees with the findings of Wood [13].
For an I-type centrifuge, the rotational velocity (u) of the bobbin

as the same magnitude as the rotational velocity (ω) as the rotor
ut is in the opposite direction, hence in Eq. (25) u can be replaced

y −ω and Eq. (25) becomes:

-type AT = Rω2 sin(−ωt)

ince −sin(�) = sin(−�):

-type AT = −Rω2 sin(ωt) (27)

hich agrees with the findings of Wood [13].
with the radial and tangential acceleration vectors added.

ωt) + r(u + ω)2 sin ((u + ω) t)
)

cos ((u + ω) t)

Rω2 sin (ωt) cos ((u + ω) t) − r(u + ω)2 sin ((u + ω) t) cos ((u + ω) t)

3. Discussion

3.1. Archimedean screw effect and the I-type centrifuge

To date the Archimedean screw effect has been determined by
only considering the rotation of a column about the column’s axis.
However, coil planet centrifuges rotated about 2 axes: the column’s
axis and the solar axis, the origin in Figs. 4–6. When determining
the head and tail ends of a column the combined affect of rota-
tion about these axes must be considered. Within the field of fluid
mechanics coil planet centrifuges are considered as a rotodynamic
machines. Analysing the fluid mechanics within such machines
relies upon knowing the velocities of both the fluids and the chan-
nels through which the fluids flow. Therefore understanding the
tangential velocity allows the head and tail ends of the column to
be determined and thus the direction in which the upper and lower
phases will flow.

Eq. (14) represents the tangential velocity for an I-type cen-
trifuge, which takes the form of a cosine wave with a period of
1 revolution and amplitude Rω and is shown in Fig. 7.

Considering Fig. 7, it can be seen that for half a revolution of the
centrifuge, the tangential velocity is positive and for the other half

it is negative. With respect to the Archimedean screw effect this
means that for half the revolution the head is at one end of the col-
umn and for the other half of the revolution the head is at the other.
Hence for half the time the upper and lower phases are pumped
towards one end of the column and for the other half towards the
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Fig. 7. Variation of the tangential velocity of an I-type centrifuge with angular position with a 110 mm rotor radius at a rotational speed of 800 rpm.
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is determined by the ˇ1 curve that is determined by the tangen-
tial velocity. The ˇ2 curve denotes the division between cascade
and wave mixing as derived from the radial acceleration. At values
below this curve, cascade mixing occurs and above it, wave mixing.
Fig. 8. The critical ˇ-values for pl

ther. In a helical column this would equate to an even (50:50)
nilateral distribution of the upper and lower phases in each loop
f the column (coil), when there is no flow of mobile phase. This
ay explain why the maximum stationary phase retention in an

-type centrifuge appears to be 50% [6,7] when there is no flow of
he mobile phase.

.2. The importance of critical ˇ-values (ˇ1 and ˇ2)

For both I-type and J-type centrifuges, critical ˇ-values help to
xplain the type of mixing and the hydrodynamic distribution of
pper and lower phases observed. For I-type devices, both critical
-values tend to infinity, which creates the conditions for cascade

ixing to occur. Also, for a J-type centrifuge the critical ˇ-values are

.25 (ˇ2) and 0.5 (ˇ1). The lower ˇ-value (ˇ2) indicates the onset
f wave mixing and the higher value (ˇ1) shows when the unilat-
ral distribution of the solvent phases becomes the same for every
olvent system [2]. For a non-synchronous centrifuge it would be
y drive ratios between 0 and 1.5.

extremely helpful to know the values of these critical ˇ-values in
order to understand how to perform a particular separation or
understand results of stationary phase retention and resolution
studies. Figs. 8 and 9 were both created using Eqs. (16) and (24).
These figures are shown separately so that the scales of the vertical
axis allow easy interpretation of the data.

Fig. 8 could be used to determine how to perform separations
for positive planetary drive ratios. For consistent hydrodynamic
behaviour2 of all phase systems, the minimum ˇ-value for a column
2 The upper phase moves towards the head end of the column and the lower phase
to the tail. Thus an upper mobile phase should be pumped from the tail to the head
and a lower mobile phase is pumped in the opposite direction.
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Fig. 9. Critical ˇ-values for plane

If a non-synchronous centrifuge had a column with a ˇ-value
ange of 0.5–0.9 then the results from both stationary phase reten-
ion studies and separations could be interpreted using Fig. 8 when
he column was rotated in the same direction as the rotor. The hor-
zontal lines denote the ˇ-value range of 0.5–0.9 of such a column.
sing Fig. 8 the following hypotheses can be made for a column
ith a ˇ-value range of 0.5–0.9:

. For planetary drive ratios equal to or greater than 1, the hydro-
dynamic behaviour of all phase systems will be the same (see
footnote 2) and wave mixing will occur.

. For planetary ratios between 0.4 and 1, wave mixing will occur
but the hydrodynamic behaviour of hydrophilic phase systems
will differ from that of intermediate and hydrophobic solvents
systems. This is akin to the behaviour experienced with J-type
centrifuges in the ˇ-value range of 0.25–0.5.

. Between planetary drive ratios of 0.05 and 0.4, a form of cas-
cade mixing occurs, similar to that found in J-type centrifuges
between ˇ-values of 0 and 0.25.

. Below a planetary drive ratio of 0.05, I-type cascade mixing
occurs.

Fig. 9 shows how the critical ˇ-values change with the planetary
rive ratio when the column is rotated in the opposite direction to
he rotor. The horizontal lines in Fig. 9 denote the ˇ-value range of
.5–0.9 for such a column. This figure demonstrates that the ˇ-value
ange for multiple column (self-balancing) centrifuges will always
e below both of the critical values. This means that cascade mixing
ill occur for all negative planetary drive ratios. Thus for a column
ith a ˇ-value range of 0.5–0.9 only I-type cascade mixing would

ccur.

. Conclusions

This paper demonstrates the importance of understanding the
nfluences that critical ˇ-values have, for I-type, J-type and non-
ynchronous centrifuges, on:
The unilateral (hydrodynamic) distribution of the upper and
lower phases.
The stationary phase retention.
The type and effectiveness of the mixing and settling processes.
rive ratios between 0 and −2/3.

Hence the user of any coil planet centrifuge needs to understand
where the critical ˇ-values are in relation to the ˇ-value range of
the columns. Such knowledge will allow coil planet centrifuges to
be used effectively to produce the best possible separations.

The Archimedean screw effect has been used to determine the
head and tail ends of a column traditionally based solely upon the
rotation of a column about its own axis. However, to truly deter-
mine the head and tail ends of a column requires an analysis of
rotation about the column’s axis and the main axis of the centrifuge.
This has been achieved by determining the equation for the tan-
gential velocity, Eq. (12), for all coil planet centrifuges. Thus it is
the tangential velocity that determines the head and tail ends of
a column and in turn the unilateral distribution of the upper and
lower phases.

The tangential velocity, Archimedean screw effect, in J-type cen-
trifuges does not always pump towards one end of a column [2]. For
ˇ-values between 0.25 and 0.5 the screw effect pushes the contents
of the column towards one end of the column when the tangential
velocity is positive and towards the other end when negative. For
ˇ-values above 0.5, see Fig. 3, the tangential velocity is always pos-
itive and the lower phase of any phase system moves towards the
tail and the upper phase towards the head [2].

The tangential velocity of an I-type centrifuge spends half the
rotation in the clockwise direction and the other half in the anti-
clockwise direction. Thus the maximum stationary phase retention
of 50% is caused by the reversal of the tangential velocity every 180◦

of rotation.
It is hypothesised that the types of mixing seen on most

types of coil planet centrifuge (non-synchronous centrifuge
and J-type) can be divided into three distinct regions. The
first region is below a ˇ-value as determined by ˇ2 (Eq.
(24)), which creates cascade mixing as in an I-type centrifuge.
The next region is between the ˇ-values ˇ2 and ˇ1 (Eq.
(16)), currently the best description is enhanced wave mix-
ing. The third region of mixing is above the critical ˇ-value ˇ1
where wave mixing occurs [3,4] as observed in a J-type cen-
trifuge.

Stroboscopic photography is required to confirm the types of

mixing that occur in each of the three regions created by the critical
ˇ-values, cascade mixing below ˇ2 and wave mixing above ˇ2. Such
photography would also demonstrate whether there is an observ-
able difference in the mixing waves above and below ˇ1. To this
end it is strongly recommended that a cantilever non-synchronous
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entrifuge be built that allows such photography and can replicate
he motion of all planetary drive ratios between −1 (I-type) and 1
J-type).

It is also recommended that Head and Tail studies similar to
hose in [2] are performed on a non-synchronous centrifuge fitted
ith two helical columns, each column to have a different ˇ-value.

he planetary drive ratio of this centrifuge would also replicate
he motion of all planetary drive ratios between −1 (I-type) and 1
J-type). This would allow the unilateral distribution of hydropho-
ic, intermediate and hydrophilic solvent systems to be studied
hen each column is used within one of the three ˇ-value ranges
etermined by ˇ1 and ˇ2.
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Glossary

ˇ-value: is defined as: the ratio of the radius (r) of a point on a bobbin to the rotor
radius (R).

Critical ˇ-value: provides a significant change in both the unilateral distribution of
the upper and lower phases and the mixing and settling of the phases.

Distal key node: is the position when point P is furthest away from the main axis of
the centrifuge or the origin in Figs. 4–6. In Figs. 3 and 7 the 0◦ and 360◦ positions
along the horizontal axis represent the distal key node.

Head end: of a column is the end to which a bubble or a bead would move towards
as the column was rotated in planetary motion.

Hydrophilic (polar) phase systems: generally have the following physical characteris-
tics: low density differences between phases, low interfacial tension and higher
viscosity phases.

Hydrophobic (non-polar) phase systems: generally have the following physical char-
acteristics: high-density differences between phases, high interfacial tension
and low viscosity phases.

Intermediate phase systems: generally have the physical characteristics between
those of hydrophobic and hydrophilic phase systems.

Proximal key node: is the position when point P is closest to the main axis of the
◦
centrifuge or the origin in Figs. 4–6. In Figs. 3 and 7 the 180 position along the

horizontal axis represents the proximal key node.
Tail end: of a column is the end from which a bubble or a bead would move away from

as the column was rotated in planetary motion. The tail end is at the opposite
end to the column to the head end.
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